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Underwater Explosion Rubbles II:
The Rffect of Gravity and the Change of Shape
Ignace I. Kclodner and Joseph B, Keller

b Introduction

The classical treory of an underwater exploslon
bubble is based on the assumption that the bubble re-
rains spbericn} gt all times: Howavar actual hubhles
do not remain sphericel although they may be sphericel
initially. Instead they hecome flattened or sven
kidney-shaped and often break up. This change of
shape is mainly due to gravity. The present report
presents a thecry which describes the change of shape
83 well as the rise of ths bubbhle, by tsking account
of gravity.

Several other ruthors, such as H:rring and Werd,
hsve also riven theories of the chenge of bubble shspe
Au~ t~ oravity. The presanrt work 1s intended to he
mcre systematié and more ccmplete than any of the
fermer theorises,

In the praesent thacry it 1s sssumed that the
water is iucompressihle and unbounded, and the pressure
is sassumed to be uniform thrcughout the buhhle at sll
times., Initislly the hubnle 13 assum2d to h2 svhericsl.
Then if we neglect gravity we find that the bubhle
remsins sphericsl hut perfcrms periodic redisl cscil-
lations, exactly a#s iIn the classicsl theory. Tsking
sccount of first o.der taoarms dus tc gravity, we find that
the bubble remeins sphericel but slsc risss cxectly ss
predicted by Herring's fcrmula, Higher order tarms
lead to the change cf shispe sand sometimes to the hresk-
up of the nunblie, and rlsc lead tc s mocificeticon cf
the Herring rise formula. A&l1ll of these results rre
dlscussed in section VIII of this report.

The assurmpticn that the water is incompressihle
can he removed, as it was in our previous rz3port cn
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the spherical hubble. However it doeos nct se=m worth-
while tc add th= c:mpiicaticn .of corpressibility to the
otner difficulties of the present prohlem. Furthermcre
in secticn VIII wo have indicated how ths main 2ff2cts of
comprassibility can he chtained hy ccmbhining the praosent
results with these cof our previcus report.

The assumption that ths wetar is unhounded cnn
alsc he ramcvad, and the thecry withcut this assumpntion
is the sub ject of our n2xt repcrt. In that rz2pcrt it
will b2 shcwn that th2 results of th2 preosent report
prcvide a first appreximaticn tc the scluticn when
the »ubhle is not toc near the hcundaries. Of ccurse
further apprcximaticns will alsc > eglven.

In secticn II the prohlem is fermulated, in secticn
IIT mcving ccerdinates are intrcducezd and in section IV
dimensicnless variablzas are defined., The mathod of
s~rluticn is explalined in s2cticn V end the sclution up
to and including the thirAd crder is ccnsidered in
section VI. A specinl crse 18 treatad exnlicitly in
sacticn VII. Finally in sectiocu VIII all the results sars
A1scussed and some gsneral ccnclusicns are draswn.

IJI Fcrmulaticn

We gssume that sn incompressivlas invistid fluid
cf infinite extent crnteins a zas hushle within it.
The velccity u(x,y,z,t) of the fluid 1is assumad tc he
derivahle from u potentisl functicn é(x,y,z,t) which
satisfies lLarlace's snuaticn

(2) FP4= 0

The pressure p(x,y,z,tin the weter 1s then aiven hy the
Bernoculli enuaticn

(3) p=m(t) -p ‘}it + %(V&)ﬂ - prz
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In (3) P 1is the density of water, g is the accelersaticn
of gravity end m(t) is en arbitrary function of time,
We have alsa assumed thet the positive z axis points
vertically upward,

The velocity V¢ Is essumed to vanish at infinite
distence from the buhble

(4) vé — 0 as (x4 yo+ 22)1/2 - ©

From (1) it is clear that ¢ is defined up to an
additive function of t. This indefiniteness can be
removed by spscilying ¢ or ¢ 8t one polnt for all t.
For this purpose wz assume

(5) & = 0 as (x°+ y+ z?)l/o - .

The condition (5) implies that ¢,~>0 at infinity, and
also implies (4), which can therefore be omitted.

The arbitrary function m(t) in (3) cen be deter-
mined by specifying p at one point for a1l t. For
this purpose w2 assume that

2

(6) b(x,y,0,t)= P_ as (x°+ y°)—>w

Thus m(t) can be determinzd from (3,5,6) which yield
(7) m(t) = P_-
We call P the pressure at infinity at z=0., [It is
Just the hydrostatic pressure at thas level z=0,
namely P°=“p°+'fgz°, ir P, is the atmospheric pressure
end z >0 is the depth of z=o below the water surfsace.]
The bubble surfsce is assumed to be given by the
equation

(8) F(x,y,z,t) =0

Since the normal velocity of the bubble surfsce must
be the same es thet of the adjacent weter, F must
satisfy the kinemstic condition
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(9) 7F 7 + F, =0 on F = 0.

The pressure 7 within th= bubble 18 assumed to
be a known function of V, the bubhlie volume, "o assume
that this function is the adiahatic one, = = KVO,
wherz K and 6 are constants, 6 bheing the adiabstic
exponent for the gas within the bubbhle. Then hecause
pressur> must be continuous across the bubble boundsary,

6

w2 have the dynamic condition p = KV ~ or, using (3)

(7¢)Ef - Prz = KV-G on F = 0,

roj+

(10) P -‘?{it*

The methematical problem which we consider is
that of finding ¢ and F, setisfying (2,5,9,10), given
F(x,y,z,0) and Ft(x,y,z,o). It 1s not necessary to
specify ¢ initially since it is dctermined by (2,5,9).
In particulsar, we will assume that the bubble is ini-
tially a sphere of raduis ﬁo agd that its initial
radiel velocity is & constent # . Once ¢ is deter-
mined, @ »nd p are given by (1,3).

III Coordinates

Suppose that th2 oriein of the x,y,z cocrdinate
system 1s fixed at the center cf the bubble ot t = O,
We now introduce a movineg cccrdinate systom g,n,g by
the eaustions

{(11) £ =x,n=y, ¥ = z-B(t).

In (11) B(t) is » function to be determined subseauent-
1y in such a way that the origin is alweys at the
coanter of gravity of the bubble. Noving c- prilnates
are introduced in order that the crigin remain inside
the bubnis : 8" 1long 18 pnssible,

Becsruse of the cylindrical symmetry of the
problem it is edvantageous to introduce the sphericnl
coordinates r,0,w, Obviously the sclution willl be
indespendent of w, and we will assume this from the

outset, We define r,8,w by



tanw =-% = % , O<w<2T

Now introducing R(©,t) we write the eauation of the
bubble surface in the form

(13) F(x,y,z,t) = r-R(8,t) =0
The hubhble volume 1is then given by

(11)  v(t) =22 S“ R°(0,t)s1nede
3
(o}

The ccnditicn that the moving crigin be at the center
of gravity of the bubble may b2 written ss
ki

(15) S R4ccs€d9 =0
(o]

To express {2,9,10) in terms of r and 8, we
observe that ir I(£,1,%Z,t) 1s ths cxpression in terms
of &,0,X for scme function I(x,y,z,t), 1.e. if
I(x,y,z,t) = f(; 7 Z,t), then w2 have the following
dirferantietion forrulre:

(16) 1_=T,, Iy;rq, Izﬁfc, It=It-BIK=f£-B(cosGIr-sinOIQ)

If we spoly (16) to (9,10) wa obtnin

(17) & —§ ¢ = R +B(cosetlB@ R ) ot r = R(e,t)
. r . e - : - ) -
27{ 3 "6 — o
(18) K(g- S: R78inede) = po-jbif(pcosg+a)+¢t-a(cosg¢r_
si

¢ )+ --(¢2+-5 ¢9ﬁ at r=R(6,t).
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The problem is now that of finding ¢,R(0,t)
and B(t) satisfying (2,5,15,17,18) and the initial
conditions (19)

(19) R{s,o)=s_, Rt(o,o)=io, B(o)=B(0)=0

It will prove ccnvenient to employ the onergy
equaticn, whizh 1s » direct consequence of the pre-
ceding equsaticns, namely

ki
Ss1neas) ™ + %—ﬁ(Pc-(‘gB)( RO81n0de -
feBl\

T
(2o)K—(-23’5\ R
5-1
C (@]
L : siné
-ng’s R™ (R *+B[cose+—=— R, 1$(R,0,t)s1n@de =
o

_4m ,3; K 4m 3-8 3 o 42
=g AL === ) "+ 5 § 4]

E
S -1 5 ©

The terms cn the left siAde ars the intarnsl energy cof
the bubble, the pctential energy ond the kinetic cnergy
of the water, respectively: the terms on the right are
the correspcnding auantities evalurted at t - O, and

E 1s the total energy which 1s d2fin34 by this eausaticn,

IV Dimensi-nless Vgriables

It 1s ccnveniant to define Aimensicnless vari-
ables ;;§,$;A,b,cgeo,éoP by introducing a unit of
length L and a unit cf time T. Thz2s2 gquantities are
defined as follcws:

6= =8
(21) pr = LF B(t) = Lb(E) k=K E
6-1
= e -1
t = Tt - L)gPo
O o — — - A B
$(r,0,t) = LT7IF(F,0,F) A =1La = =2 (8-1)8
0 ° 6-1 &

R(6,t) = LA(6,E) A _= LT *a

P

4 -

e i i

R Dt s L R R
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For L and T we choose the definitions

.1/3 |
(22)L = [31(‘5.‘1)5 , T=1L|
‘5 \‘

Now equations(2,5,15,17,18,19) become the following
set for 3,% and b:

owfn\

(23) V24=O, d - 0as r =
)‘9
4r = ;2 de - At - b(cos € *

(24)gl(e,t)

at r = A(6,t)
A

(25)(0,8) = 4y + 3 {11 +(221 L 4g + & s1ne)? +

+2) E[l¢ +Bsie]+7\2-f>2)+d(w+b)+
t x 'T % n t _ 1
i \ =6 -
+ g,l S ABSinGdG -1=0 at r = A(6,t).
k\2 =

(26) A(@,0) = a_, Xt(e,o) = a, , b(o) = b(o) = 0

T
(27) S lhcosg sin6de = O
o

In (23-27) the bars have been omitted and two new
functions g(@,t) and h(6,t) have been defired by (24,25).
The quantity'ﬁ\is defined in [21). rquation (25) is a
consequence of both (7) and (8), and the symbol P, in it
denotes the Legendre polynomial Pl(cose) = cosf.

The energy equation (20) becomes, in dimensionless
variables and omitting the bars,

g
(28)- %_ ( 7\2 (xt+ b( cose + 5%29 xel)¢(k,9,t) sin® 46 +
‘o

& i
+ %(1 ‘Gb)g KBSinO ae +/°\L-35k(% g KBSinQ d9)1-6= &‘3
% )

b e bl

bt i o e e B
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It should ve.noted that a and &, are nc longer inde-~
pendent, since they are related by the following
equation, obtained by setting t = o in (28).

'
(28°)

3 2. .3 ~-3% 3(1-86) _ =~ -3
ao ao 8 ao + K o~ a; = oL

3
2
Here ;: is the constant
PaN
o

6-1 1/2
6

(29)

V Method of Solution

In order to solve (23-27) for 4(r,8,t), A(6,t),
and b(t), we make usc of the fact that a solution ¢
of (23) can be cxpressed as a lincar superposition of

zonal harnmonics r-(m*l)Pm(cosO) and that A can be ex-

pressed as a linear supcrposition of Legzendre polynomiels
Pm(cose). The coefficients in thesc expansions are
functions of t. Next we make the assumption that all
these coefficients, as well as b(t), can be cxpresscd

as series(convcrgent of asymptot;c) of powers of the
parameter . 1is paramcter, dcfined in(21), is progor-
tional to the accelerstion of gravity g, and is ecual

to the ratio of the unit of lengtiz: L tc the hydrostatic
head Po/?g at the initial bubble conter. Thus wvhen

0 = O the priscnt solution is just that of the spherical
bubble theory since ¢-= O 1s equivalent to g = O,
Formally we assume

(t) ,-(m+1)

(30) 4(r,0,t) = P (cos @)

w118

n& ¢
J‘L—— Cnm
m:

(o] o]

(31) A(e,t) =££_ " f_ a

> (t) P_(coco)
n=o m=o0 ™ m

nr

fee
(32) b(t) = ¥ " b (t)

n=o

o
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The problem is now reduced to that cf dctermining
Cam’ %om and bn which arc¢ <11 Tunctions of t, in such
a way that (30-32) satisfy (24-27), since {23) 1is already
satisfied. Insertion of (31,32) intc (26) yields (dot

denoting t derivative)

]
e

ao’ aoo(o) o

(33) a, (o)

"

<] if n+m>o0

a__(o)

- o, a (o)

nm
(31) b (o) =0, b (o) =0, ngzo

Vie now inscrt (30-32) into (24,25) and cquate coefficients
of zfn Pm(COSG), thus obtaining a sequence of equations
involving the coefficients and their first time deriva-
tives.

The zero order terms(n = ¢) correspond to the solu-
tion obtained when ¢ = o, i.e., In thic acs.oncc of gravity.
The equations for thesc coefficicnts, with the corrcs-
ponding initial conditions from (33) can be solved at
cnce and vield

(35) ¢, =0, a o0, for m>1

b =o
o

The other two 2cro order cocfficicnts satisfy

2 .
(36) “o0 = ° (aoo aoo)
2 -38
2 e o =1 5 s k -
(37) (aOO aOO) aOO - ?aoo - § aOO =1

squation (37) is thc well known equation of the
classical theory of spherical bubblcs, expresscd in terms
of our units, cnd (36) is the corrcs»monding expression
for the votentiel. The solution of (37) =atisfying the
initicl conditions (33) is a periodic function of t
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which incrcascs monotornically from a minimum valuzs to
a maximum valuc during a half period znd dccreases
monotonically to the minimum during the next half pericd,
The sclution can be written in the form

(38)  a  (t) = ’la(J-f}-"Qt +T, = elt),

A -

where the phase t, is defined by oc lm(l’o) = a
The function 2 (U) is an cvcn periodic function

of T decfined over the first half period by its inverce

function T ()

The numbers X and&,gso—z, are the minimum and meaximum
valucs of @, and arc the two roots of thc cquation

(4o) 1 - x3 - rx—3(0-1) - ¢

The paramcter k, which detcerir nos & and;, is
defined in (21) and satisfies thc inequality

= S
(41) O < k £ k = == (222,
6-1 6/

\-6
The equality occurs only when a = 0 and P, = k(%AB,’ .

The second ccndition mcans that the initial bubble
pressurc equels the initial hydrostatic pressurc at its
center. From (40) we 2also have tho inequality (s
defined in (29)].

A _—
(42) 0 <« &(k) <cx<ox(k) < 1
A
The equalities holds when k = k in which case we have

(L3) &(T) EO/L\= constant
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Then from (38) aoo(t)’ which we will henccforth call
a(t), is constant and equal to one. Thus the unit of
length L 1s the ecuilibrium bubble radius, i.e. the
radius at which the bubble pressure would equal the
hydrostatic pressure correspoanding to its initial
center, while the total energy E would be unchanged.

In order to write the equstions for the higher
order coefficients (n 2 1) it is corvenient to introduce
the functions g(@9,t) and h(6,t) defincd by

€ @ .o
- _ D n,e S ° a
(4ly) g(o,t) = g(o,t) +‘%;1cr (b Py +‘ﬁio (&, -+ aa.anm +

@D gL
+(m + 1) a_(m + 2)c 1 pP) =;_ dn'L‘ P
nm’ m A e &nm'm

(45) h(e,t)

(00) Kk
n(e,t) -y o -30 £ 27301 a4
n:

1 k 1o
Q 2. e e - na
+> [ng—_)a + aa "'a(;"-‘lE]P):
A nm nm nm’ ‘m
® Joe)
n <
2 h_ P
n=o M=o M m

The functiuns g(e,t), h(e,t) cccurrisg in (44,45} arc
defincd in (24,25). The coefficients 8 m» Ppm are defined
by thec above equations. It 1s easily verified that

gom and hnm depend only upon theosc coefficients a

c
am? bs with s < n.

sm’

Now inserting (30-32) into (2j) we obtain for
n>290
. 1 am+2 [l.l

a
+2=a__ - ) m#$ 1
nm m+l nm a nm gnm o

(46) .
C}u.= - % a3[ t.>n + anl + 2 % %h1 © 8n1] s, m=1

Similarly inserting (30-32) into (25) and making use of
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(45,46) we finally obtain aftcr some manipuletion

- ss - kK _~36-1 _
aa + 3aano + (a + 36 § a )ano = ag +
(47)
+ zagm +h m=0
3- Y _ 3 . 2 =
{a bn) = (a7[gy - anll) +2a°h, , m=1
aﬁnm + 36&nm + (1-m) Hanm = aénm + (m+2)&gnm
+ (m+1)hnm . m>1

squations (47) and the initial conditions (33,3)4)
dctermine the anm(m#l) and b_once a,  and b, (k<n) are
known. The a , are determined in terms of the Qe with
k<n by (27.. The € are given by (46).

Now ell the aom(mzl) are zcro, and b_=0, by (351,
and a_ = a(t) 1s given by (38,39). Thus wc may proceed
to find the m and b1 and continue step bty step to
obtain all the coefficients. It would scem from (47) :
that at each step n>o we have an infinite sct of non- i
hoaogeneous ordinary differential equations to sclve.

However it 1s shown in Appendix I that 81> 8m and hnm
are zero whencver ron or m+tn = odd intcger. Thus those

of equations (47) in which thesc quantities appear

become homogeneous linear equations, and since the initial
data are zero by (33,34) the soluticns of these equations
arc zero, Therecfcre we have

48) a

nm 0 if m>n or n+m = odd integer

bn =0 if n = even integer

Thus from (46)

(49) Coq =0 if mon or ntm = odd integer
Hence at each step there is only a finite set of equations
(exactly [ Qél ]) to be solved.

As a consequence the expansions for ¢, A, and b,
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up to the third power of ¢, sirplify tc
-azar'l

(50) ¢

-2 R -3
+ oley r7%)) +52(C—20r 4,y 2P )

) 3 -2 -,
+C— (C31r Pl+ 331‘ uPB) o=

A = a +O—2(a20+ 822P2) +63(833P3) + .0
b = ob, +03b3 F

In the expansion for A the terms o’allPl and<r3831Pl
were omitted, since by (27) 2); T 85;F 0. It is not
true, however, that a4 = 0 for 211 n. In fact, for

- - 7 -1

= hn D - =
n =5 we have gy 2 Ta,508q3 .

70
It is convenient to take cdvcatage of the preceding

results, at lcast up to terms in c72, in order to calculate

g(e,t) and h(e,t), which thon become

=1s

(51) g(e,t) = bla22P3 + e

1]
!
(WV]
)

3 _ 18
0.20- g 2122) Plo- = -5- a

f(e,t)

3

T (Sa20 + 2a_ . + aﬁlfa'1a22]39f73 +

22
+ % (3“22 = asl[a-laazl.) P363 + eee

Thesz expreszions facilitate writing cquations (47)
cxplicitly.

a—— e
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VI Solution Up too

For n

detceraiined is bl. ‘Since froa (51) e have
‘hyy = 8, equaticn (47) vields Fer b

(52)  (27b,)

Thus, usins the

t

)

)
squation (53) is

(53) by - 2

~accounts for the

1 the only nun-zere coefficient to b

o
=~

’
~

11
1

=
D
o

2

initial date in (34), wo havs

.t N
a-B'EX a2t !dT:
L o -
the Herring rise formula vhich

unly first order offect. The bubble

shapé 1is unaffected in first crier, dut the water

flow is modified since

C

11

a3'dt.

Al

J

For n = 2 the“only cocfficients tu be determincd

are a20 and a22f

(54)

._‘h+ (3'+ 36

From (47,51,53) we have the equations

af35'1) 3

g ' x g 2
8gp + 3885, z Bog S Pyt Byt
{o)_ (o).
aj)= a58’= o
(55) i, + 338, - Sa,, = - 252 , al8) 2 ale) o
In terns of ths solutions of these equations cnd

makine usec f

&
2n

(56) C

are given by

20 (a

{570 %,

"3

For n

are a33 and b

3.

2

L2

(46), the only non-zero ceefficicnts

a59)

(aza

22)

3 the only coefficients to be determincd

From (47,51,33) we have



(58) aayy + 32835 = 2ac,. = - 6D

(59) (26,7

Il
]
\»
i-"
[0}
[

o]
+
o
i

n
§2
")

+
uto
P
£

[AV]
(o)

\s

Then ucing (4o

WG . l 3¢ + - 1
(60) 31 2[& b3. 3bla (aZP 5 322)]

o
=
W
w
|
)
1
—
o
W
o]
n
)
)
Lo
4
3=
C
c’
]
§

suctivns ¢~ He solvad explicitly
in the so2ei 1l cose of thoe so-c¢ 1led "cguiliirium
bubble", wbicn is tro-ted i

3
o
-
e
K]
e}
>
ct

gection, Ik
genercl, haowcver, it secms necess r+ ¢u interrcte
the preccding egquctions nunier

|
(@)
[
]
Pl
]

in order to

obtain cucntitative resuvlts, Sucx rcsults 0111 be

published soon.i&
It is useful to recoznize thst cquotion (53)

for the riso bl(t) cen be vt in 2 form

-

2 _ A
(62) bl(t)=St + 2 ¢+ 1
Here S is @ constaont unila 2 md 5 sre periocdic
functions «f t hovin~ the sawe torisd as a(t), Tals

forn Derits us to deteornine the dzhavior of bl(t)

fur 21l t by mcrely cveluoting inteprals {or c¢nce period.

These ante o e apooor ia thr defimations of 3, ¢

and © ukich cre, if t. is the poricd of a(t)

%*, S L.
Penny and fr—ce hove oxcnined ¢ solutican of the hono-

senecus cquatiens (47) for n = 1 witl: nea-zero initisl

date in order tc study tluc grovtn of in:tial asymuelry,

e

A A Gt - o ond & MRS kA D - SOt 8. Wi

pryTe g ¥

J /8 L R

T4 B P

- D e e taalana
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(63) s =

= by(t) - StT - Pt

The vperiodicity of P 1is obvious, while thuat of con be

proved with scrie maninul tion, Bsuacliens (63) apnly

L]
only if T; =4 =a = 0.

VII The Zguilibriun Subble

In scetion V, followirny cnuation(iyl) it is showm
that if k = k then the zero order bubblc radius a(t)
rcaains constant and equal to one. This cccurs if
the initiecl radial velocity is zero and if the initial
bubble pressure equels the pressure in the water at

the depth of the bubvlc center. Ve rcelfer Lo thas

case as that of the equilibrium bubble sincec the

bubble would remain at rcst in the abscnce of grovity,
Since the radius a{t) 1s idcntically constant

end in fact equal to one, due to our choice of units,

all the cequations of the preceding section sirplify to

such an extcnt that they can be solved explicitly.

By sclving them we nbtain . the following expressions.

for A(6,t), b(t) and ¢(r,0,t) ur tec and including

the third order in

2)2

(64) A(6,t) =1 +(ot E‘(T.') - 3/4 PZ(COSGB +

A
(atd) % P3(cose) + ..

2

(65) b(t) =gt~ - (cr'c2)3 g(T) + ..

. s




3 mivpfa M ) A
(66) d(l"’gyt) = “6‘51'-21"1(0039) - 3‘6'\/: = .,lnﬁu )JGr

2 - 5 1
+ 23y 3P2(cose) +<I(26 tee 3‘-25 £3 + —-22 t

- '(—3?1)-27? sin \[-3—:3-]{;’:!0’3 r"'u’ ?l(COSQ) :3

- g% 03t5 r-u PB(COSQ)

Tn caouations (64,65) T = V36 't ana £(7), g(T)
are given by

]
(67) £(T) =2 - =k (1 = cosT)
= T
< i PR, s 1
(68) (i = 215 -;% -? [:2(1 - cesT} -TsinT|
L - —

These funciticas both deercuse foirly slowly fron
f(o) = 1/6, (o) = 7/12 to f(w)= 9, gle ; = 9/2C .

Usinr equations (6°) andé (65) we have coastruct-
cd grovns of tne butwle profile at veoricus tises from
t =0 wtil t = 1,39, choosing &= .222. Thesc
gravhs, in Fisurc I , show the risc of the buuble as
wcll as its deformaticn,

Sinecv (94,065) arc only the first terms in a
scrics solution, wc can expect thcnm to reprcient the
2 lution accurately {fer » shurt time, after which the
omittecd terris becowe irportant. In order to detcriiine
when the omittced terms becorme signillicent, we oan
cxaminc the c:pressions in (64,65) to find when they
fail., Two kinds of failurc occur. 1In the first king,
the origin of coordinates, wkich 1s located at the
center of gravity of the bubblc, ay cross the bubble
surface and c¢ntor the water. Tunen trne potential
function ¢(r,8,t) vhich has siizular.tics at the ori-
gin, will be sin;ular in the rater, coantrary to the

Atina
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asswpelior of re~ularity on wliicr the sclution was
based, Therclure thie cxpressions (6',55) certainly

¢ Jur 3o valucs of

o’
C
(¢}
c
=
Lo
i
<
j &}
[
’Jo
]
n
3
o]
G
33
[ 9]
42
>
]

& anc t. Il gz 222 tais faliure .o the first to
2

occur, end it ocecurs wlengtz.2 a.¢ Yor @ = T,
Tiius in tiiis case tac bette : of tig tubele Lulres
unuwerd until it rcaches the cenver of Sravityr.

e

n
AUl

¢ou@ tyne ol failurc ocrurs becruse (65)
arcdacts that Uhce osubble will rise fur awihillc and
thenr faXl, Tiis is, of course, puarsically uvnreesoa-

avle, cnd we thercfore consider (65) to fail whes

his

[

b{t) = 0, i.¢. when the bubble stops risin~,
type of lecilurc is the first to occur ifgs .222,
end it vccurs when c’tzi‘:. te Thercfors vhen o = 222

both ilures cceur sirmultanewusl--, cnd thie occurs

o]
cr
ct

= 1,09, which ¢xpla'ns why the gronbks in Figure I
were only coiustructed until this value of ¢t.

A3 an oxamnle of these rcsultz, let us consider
a nubble of onec inch radius initially located tea
inches below the surface. i N

(4, =1 , 2, =10 )

The prcecssure above the surface is atrcsohneric (po =
1 atmospherc) so that the hydrostatic iicad a2t the bubble
is 33 fcet plus 1C inches or 406 inches, uwhich is
o6 tiics tac initial radivs., Thus g = ﬁ%5 = ,00246.
The vnit of leneth L is equal to tlhie irni:. ol radius
Ao for the equilibriuw: vutble, so L = AO = 1 inch.,
Then the unit of time © = ,0025 sceends. If we use
~the itlerring rise formula, wvhick Is tie first term of

(63), thc ri.. b{t) = Ot%, so thc bubdble will rcach

P s 2 _ 2o _ . — £
the surface wnhin gt = .= = 1coer t = 64 units.
llowever cq ~tion (6h) Falls when A(r,t) = C which
occurs a2t t = 16 units or .CY4C seconds. The bubble

rises only .55 inchies beforc the foraulac feil,
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VIIi Discussic.r of Results

e have nrescated o systeatic cthod for
deternining the shence zad risc of the bubble aind the
sotertial function iu the water, fron whick the prossure
can oc¢ cowmuteud. This ticthod ic based wor a n
serics cxpansion in tcrms of a dirmcnsionlcss nara-
actir o which 1s the rotio of the cauilib> _un bubble
racdius ©. thc hydrostatic hzad above the initic
buovble center. Thus ¢ is proncrtional to the accel-
eration of gravity ¢, so our cxpaasion carn also be

o be in powosrs ol . ror any bubble
wvhich does not vent (1.e¢. breal: throuch the water-
air surfacc) during its first expansicn, ¢ ic less
tizan on: end grecter than zero,

The ternis of zero erder in ¢ correspond to the
classical theory of & spnierical Cutble., They describe
a solution in which the bubtle roncins sihericcl and
perforns undoipced periodic radical oscillations, waiile
its centcer rcuoins at rest., Tne cqullibfiu4 bubble
is a snccial case which doces uict even ozccillete.
thien terms of first crder arc 2lse included, the only
medificuation is thot thic center of tie bubbkle risco
accordin: to the Herring risc fer.unla,

llhen terms ¢f scco. ¢ orcer arc included the
siiape of tihwe buvvle is found tc chianoc althourh the
risc forrmla is uniocificd., The chenges in the bubble

arc of two kinds corrcsponding tc the two ternms

dzazo(t) and ¢
The {irst teri corrcesnonds to & change in voluric of the
bubble, which is an increasc in thc casc of the equi-
libriwa bubble and also in a numericel exanmsle which

+
r

we hava treatcd. Such an incrcecasc is to be cipected

. a,,(t) P,(cos®) in (50) respectively.

in mcneral on tlysicel orounds, siice the bubble is
risin~ into a rcrion of lower prescure.  From the
diffcrential cquatica(by) for azo(t) it can be shown
thet in jcneral s starts ot zoro aud increasce, at

— F ———

e e 4




——. T T

2C,

lcast initially, ir cgroenent with the preceding

i
cconsideratioens,. A8 o censaquonce of the inercase of
aao(t) it follows that the tinc betwecen successive
ninina (or mania) of the bubble voluune is dcercosed
below that siven by the zero order (shhericael bubble)
term alonc., In cddition the expaasion phess 1s in-
crcascda in auration, whilc tne coutraction phose is
¢iminishied in durcation,

Thc otlier sceond order toer: corrcsuendsa to a
flattening cf the bubble. Siacc ape(t) startz at zcro
and deercases, as cnn be scen from the differcntial
cquation(55), this flattcning is ia the vertical
dircction, i.,c¢, the verticel scparition bHetween top
and bottce:: 1s Jird :dshed, while the borizental
scnaratior betwecn sides is ircrcascd. This cen o
scen in the figures, z2nd is in arrconent with ob-
sarvaticn, a3 arc thc prccedine results,

Wnen teriis of third order in o arc included
thie shape of the bublle i1s ascin wodified whiile tiic
rise formula is also changed. The conly term of this
order in thc cquation for the bubble radiuvs is
03 a33(t) PB(COSQ), wirdel: lecaves thic bubble velune
unchargod but chiances its shape. 3ince a33(t)
starts at zcroe and incrceascs, s onc can shou fron
the uiffonent

]
- - -

-

12

~1 A o rAen . Nl alhnn e
~“a g8 S CaLn-sC CL 222apC

!

cerreshonds to pullil

£
ot
oy
e
o
0
ct
ct
s

oy and »nushing up
the ton, so tiic tubblc becoumees kidnov-siiaped with the
lower sidce concav:, This bchavior can be scecao in the
fimircs and is also in agrccement with observation., The
third order corrccticn to the risc forsmla cean e skown
to start at zero and to becuic nerative, from equeticn
(59), in arrccrment idtli the nunerical examplce end the
¢quilibriwi bubble., This corrcction is alsc in aprec-
went with cxperiment, since the Herrinz forrmla pre-
djcts too lcrge & risc,

L11 ol the gravity cffocts Gaescribed here cre

- ctency A hd ®
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greater in aeonltude &id occwur wre ourclly, the larger

e o TR

the value of ¢ ou g is lavoer for lavge cilocicns,
so t£ll tac offcets duceribed sheuvld He wre protinacint

for such c¢r-losions, L lirgs veluce of ¢« is elso

> -

ovtaincd If tic mressure chave the vater zurface is
rcdueeca,  This crpliuins wbhy tlhicse ofvects hove becn

cbscrved 1 reduced wressure tonks,

sn o

The tchavior of tihc bubble depends not only
upon < but 2lse won chother di-cnsiconlceas parancter
k. The s=ialler the volue of k the ~reaver is the
armplitudsz cf oscillation of the bublle, 3incce small !
k correspcnds tc o larpe e:ploesion cncrgy

K pO-1 -6
k = - !
5-1 ’

/

A
The =waximui veluc of k is k which is cticirzd for thne

' cquilibrium vubkble., Since the cravitetional cflecte
j depend meinly on €, rcsults for the cquilibriuws
s bubblc iiidicate what will k2o

neT An genceal.,  Thore=
' fore we cipect tnct for cny veluc of k, cquaticns
' (50) for A and b will foil at a certain tine, just es
they co for the cquilitriuwia bubile, k = ﬁ: Since in
general the buudble becomes flattencd ana then kidney-
shaped, v expcect tie conter part of ¢l lower surfacce
to continuc rising, liikke o jct, until it rcachies lhe
upper surface, thus coaverting tixc bubble into a
torus, ror the cquiliorium bubble, failurc of the
cquations occurs whcncftzzz. , SO vec may zssune tha
the recl breckdewr for any bubble will occur when
c5t2;:1 or tk}yrl/a. 48 one periocd of tic bubblce is
about 3/2 units for an oxplosion btub%l:e, thc brealkup
should occur after about ?cr-l/z Deriouat Forhlcree
explosions, with larse valucs ofg, this nay sccur
during the first ocriod,

If the bubble does breakdoun into 2 torus, vhat

will be its subsequent blhavior? The resultis of

— TNy o - ——— e




Tomotiica o a terus ¢f one flui
indicate that o torus is glso w
generally brealup into 2 certal
dctceriiined by the dimensions, ¢

picces nicht flatten, beceme ki

22

¢ aithin another fiuid
nstable and will
n number of pniecce
tc. Then cacL of theso

dney shapcd and breax-

down intu anotlicr torus, which would again breckup,
etc. This sccus to liapowen when o drop of one iluicd
(c.o. inkk) is drovred into ancther (c.g. water),
Fizally let us consider hicw corpressibility will
alter the present results We hove cttenpted to
account for cor@r0531bility of the ucter, as we did
in our previcus rcport on the spherical bubble, by
using the wave equation for the potontial in the
‘vater rather thon Lanlace!s cqa*.:xt:'Lonj'r Ve then

expressed the doluticn of this cguation as an infinite
scrics of rmléinoles, but we worc forced to uvsc a

fixed origirn rather thian a nwoving onc.  Woe alsce
expressed the bubble surfacc as © scrics in powers of ¢ .
and in Legendre polynomicls, and attewpted to Jetormine
the coefficicnts. We found that the teriis ¢f zorc

ordcr in & wer: cXactly the saine as the scolubion of

ocur previcus renort, os we noturally cxpected. The
higher ordcer cocfficients satisfied second order cqua-

tions sinilar to¢ thouse obtaincd

e

DU.D CI-(: CUClllClU""bb Jor CS8C C
function a{t) of our previcus r

)

incormpres

of
mnain result of that renort-dawp

3olution our wrevicus r

would be incorporoted

*In an unpublished manuscript.

cquaticns by

czert,

into the prcsent

in the prescnt reJort,
gue

oBO

tions involved the

-y
e,

9

ratler theon the

This was not thc only

Ed
]
-~

e S S e o
O3St Luportent on

th

I3
>4

npresenit results
fluid,

ty would be accounted

<t o @

4
-
Liic

and
the compressibdle
In thiis way the
el racial csecillation-

work,



]

23.
Appendix I

Theorem: If é, X\ and b are represented by the formal
series in equations (30-32) and if they satisfy the
equations (24-27) then for all n > O

(A1) grmahnmz‘nmzcnm’o
if m>nor ifm+n 1s odd, and

(A2) b, =0

if n is zero or even.
Furthermore 8nm and hnm are polynomials in B g
&kE » b, and 61: with 0 < £ < k < n and are independent
of all other a's and b's except 8.0°
Proof: The proof relies on induction with respect to
n. Thus we assume that the theorem is true for all
n < N anéd we will show that this implies the theorem
for n =N 41, It has already been shown in the text
that the theorem is true for n = O (see equations (35)
and (51)) and therefore the theorem will follow for all n.
In ordsr to perform the inductive step, we intro- 1
duce the set H{: of all formal power series in ¢ and x l
with coefficients depending upon a parameter ¢, which
satisfy the conditions unm(t) =0 if n<k, orm>n and
n< Z,orm+n=o0dd and n < £. The quantities
w,.(t) are the coefficients in such a formal series u
given by

2 n<& n
(A3) u= 2 o 2 x ul(t).

n=0 m=0
We also deifine the subset ﬁ;? c Hﬁ? of power series in
which the non-zero coefficients U RS £, are polyno-
mials over some set [¢].

If x = cos ©, then since Pn(x) is even or odd ac-

cording as n is even or 0dd it follows from the induction
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hypothesis that
(A4) EEeH), hEH,.
If we let {c] dsnote the set of 8.m’ ®nm’ ®n and their

time derivatives with O < n < N then it also follows
from the induction hypothesis that

(a5) b(r,t) €, A €, bpxed.
o 1
We first wish to show that
(ae) ge®, Hedltl,

In order to do this we first note the following proper-

ties of the sets ﬁl’f:

(a) ﬁ;‘ecﬁlf' it L >F' and k> k'

(b) u ¢ ﬁog —-u ox"EHY nc< £
(c) u¢t ﬁk'z, vE ﬁ{‘e - (0cu + gv) € ﬁkﬂ, uv € ﬁé%'k
(d) uSﬁk‘e, vsﬁ‘f', £+k'5£' +k->uv£ﬁl’£;l,{'

.
(&) weh, o #0- (x +u)“-noc“‘1usno~"1,

£
1

™

(o + W) =™ €1

o

() uEﬁéZ-butEfi’e

: £ = 2 2 = P41
(g7 uﬁﬂo. VEHO—b(lox)uxvxEZHZ .

Now making use of these properties and the induction hypo-
thesis we can prove (A8).

—_
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To prove (A6) we consider various parts of g and h
separately. Thus if we consider the following terms in
g we have

an (00) .
(A7) b (A,8,t) + 65?‘1 anmgo (2 % a, + (m+ 1)a‘(”’*2’cm]pm

= a6l A2 & 22a”3( A - a))

+ f‘i " S (m+1)o (am(mB) _ \-(m2))p g gl
n= m=0

This is proved by noting that since a # 0, the first term

abova is in ﬁﬁ‘l according to (e). Furthermore each term

in the sum 1s in Als) by (e), (d) and (a), and therefore

in §§+1. Now by (c) the sum is also in ﬁg+1. Thus the

statement (A7) is proved. In a similar way the remaining

terms of g, and all the terms in h may be shown to belong

to ﬁ§+l, but the details will be omitted. Therefore (A6)

may be considered proved.

Now we consider equations (47) for the a,, and b,
with n < N+ 1, Whenever m > nor n + m = odd, the inhomo-
geneous terms in the equation for 8.m vanish, since these
terms are proportional to hnm and Bnm’ which have just
been shown to vanish. The resulting equations are linear
and homogenscus, and by (33) the initial data are zero.
Therefore it follows that the solutions 8m = O form>n
or n + m odd. Similarly from equation (47) for b we
find that tn ta, = O for n even. In order to conclude
that bn =2 0 for nnooven we must prevs that.anl_=_q_;9r n
even. Once this is proved, it will also follow from (486)
that e Oform>norn+modd and the theorem will
have been proved.

Thus we must show that for N odd, ‘N+1,1 = 0., To
this end we consider equation (27) and expand the inte-
grand in powers of o, using (31) for A. The coefficient
of aN+1 in this expansion is a sum of terms of the form

o o i I St o A M & SRR
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1 4
(a8) [T tagp P 1)) ax.
' sn=a

In this equation the variabvle x = cos © has been intrc-
duced. If all n, in a particular term with a non-vanishing
integrand are < N, then since their sum = N + 1 = even,

the sum of the corresponding m, is also even. This fol-
lows from the induction hypothesis, since for n < N,

# 0. Consequently 'ﬁ' P (x) 1s

i=1 i
an even nolynomial in x and therefore the integral vanishes.

Hence the only terms not vanishing identically are
those in which one n, say nJ = N + 1 and the other n, are

n, + m1 = eoven 1if animi

zero. Now if ng = O then m, = 0 since otherwise B = o.
4 1

Therefore [T P (x) =P (x) and the integral vanishes
i=1 1

unless mJ = 1 due to the orthogonality of Legendre poly-

nomials. Consequently the only non-vanishing terms are
of the form

3

1 ,
(A9) SSJP an+1’1P1(x)x dx = % 878y, 1
-1

There are four such terms and thus the coefficient of

ol 4, % ‘38N+1,1° From equation (27) th's coefficient

must vanish and therefore

(A10) 8N+1,1 = O

This completes the proof of the theorem.
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Figure 1

Rise and Change of Shape of "Equilibrium" Bubble

Profiles are shown for five values of ¢t fromt = 0 until
t =1.89, at which time breakdown occurs. The cernter of
gravity is also shown for each value of t by a dash on

the z-axis.
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